If it's not what You are looking for type in the equation solver your own equation and let us solve it.
+16Y=64Y^2
We move all terms to the left:
+16Y-(64Y^2)=0
determiningTheFunctionDomain -64Y^2+16Y=0
a = -64; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·(-64)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*-64}=\frac{-32}{-128} =1/4 $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*-64}=\frac{0}{-128} =0 $
| -31-4y=-5-5(1+5y) | | -6n-20=2n | | 3,5x+Y=350 | | -8-y=y4y | | 9(x+5)*x+5=480 | | 23=7+5t | | (180-x)x3=60 | | 441=0.5*m*(7^2) | | 19=12+(g*7) | | 5x+41 =461 | | –7x+2=23 | | x/125=0.60 | | 1,5x6=2x | | 4x+8=2x+11=4x+4 | | (x/125)(100)=60 | | t÷5-4=4 | | 2x+16=50,2x+16=50, | | 10m-26=24 | | 2410=Ò*(12*12)*h | | 2410=Ò*12^2*h | | 4(4p-1)/5=2(3p-4)/3-1/5 | | 5y+2=3y–4 | | 4a+8=6a+3 | | -8-3y=4y | | 3x-8=14.5 | | 21x-17/20=0 | | 40+0,575x=x | | 20+x/4+1.1x/4=20+x | | x/4+1.1x/4=x | | x/4+1.1x/4=10 | | x-5(9+3x)-7+6x=7(8-7x)+3x | | x-5(9+3x)7+6x=7(8-7x)+3x |